Источник ионизирующего излучения это

Источник ионизирующего излучения это

  • Основы безопасности жизнедеятельности
  • Безопасность, угрозы и опасности
  • Принципы, методы и средства обеспечения безопасности
  • Система “человек – среда обитания”
  • Географическая среда
  • Правовые нормативные и организационные основы обеспечения безопасности жизнедеятельности
  • Системы восприятия человека
  • Ультразвук и инфразвук

Характеристика ионизирующего излучения

Ионизирующим называется излучение, которое, проходя через среду, вызывает ионизацию или возбуждение молекул среды. Ионизирующее излучение, так же как и электромагнитное, не воспринимается органами чувств человека. Поэтому оно особенно опасно, так как человек не знает, что он подвергается его воздействию. Ионизирующее излучение иначе называют радиацией.

Радиация — это поток частиц (альфа-частиц, бета-частиц, нейтронов) или электромагнитной энергии очень высоких частот (гамма- или рентгеновские лучи).

Загрязнение производственной среды веществами, являющимися источниками ионизирующего излучения, называется радиоактивным загрязнением.

Радиоактивное загрязнение — это форма физического (энергетического) загрязнения, связанного с превышением естественного уровня содержания радиоактивных веществ в среде в результате деятельности человека.

Вещества состоят из мельчайших частиц химических элементов — атомов. Атом делим и имеет сложное строение. В центре атома химического элемента находится материальная частица, называемая атомным ядром, вокруг которой вращаются электроны. Большинство атомов химических элементов обладают большой устойчивостью, т. е. стабильностью. Однако у ряда известных в природе элементов ядра самопроизвольно распадаются. Такие элементы называются радионуклидами. Один и тот же элемент может иметь несколько радионуклидов. В этом случае их называют радиоизотопами химического элемента. Самопроизвольный распад радионуклидов сопровождается радиоактивным излучением.

Самопроизвольный распад ядер некоторых химических элементов (радионуклидов) называется радиоактивностью.

Радиоактивное излучение бывает различного вида: потоки частиц с высокой энергией, электромагнитная волна с частотой более 1,5 •10 17 Гц.

Испускаемые частицы бывают различных видов, но чаще всего испускаются альфа-частицы (α-излучение) и бета-частицы (β-излучение). Альфа-частица тяжелая и обладает высокой энергией, это ядро атома гелия. Бета-частица примерно в 7336 раз легче альфа-частицы, но может обладать также высокой энергией. Бета-излучение — это потоки электронов или позитронов.

Радиоактивное электромагнитное излучение (его также называют фотонным излучением) в зависимости от частоты волны бывает рентгеновским (1,5 • 10 17 . 5 • 10 19 Гц) и гамма-излучением (более 5 • 10 19 Гц). Естественное излучение бывает только гамма-излучением. Рентгеновское излучение искусственное и возникает в электронно-лучевых трубках при напряжениях в десятки и сотни тысяч вольт.

Радионуклиды, испуская частицы, превращаются в другие радионуклиды и химические элементы. Радионуклиды распадаются с различной скоростью. Скорость распада радионуклидов называют активностью. Единицей измерения активности является количество распадов в единицу времени. Один распад в секунду носит специальное название беккерель (Бк). Часто для измерения активности используется другая единица — кюри (Ku), 1 Ku = 37 •10 9 Бк. Одним из первых подробно изученных радионуклидов был радий-226. Его изучили впервые супруги Кюри, в честь которых и названа единица измерения активности. Количество распадов в секунду, происходящих в 1 г радия-226 (активность) равна 1 Ku.

Время, в течение которого распадается половина радионуклида, называется периодом полураспада1/2). Каждый радионуклид имеет свой период полураспада. Диапазон изменения Т1/2 для различных радионуклидов очень широк. Он изменяется от секунд до миллиардов лет. Например, наиболее известный естественный радионуклид уран-238 имеет период полураспада около 4,5 миллиардов лет.

При распаде уменьшается количество радионуклида и уменьшается его активность. Закономерность, по которой снижается активность, подчиняется закону радиоактивного распада:

где А — начальная активность, А — активность через период времени t.

Виды ионизирующих излучений

Ионизирующие излучения возникают при работе приборов, в основе действия которых лежат радиоактивные изотопы, при работе электровакуумных приборов, дисплеев и т.д.

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское) излучения, способные при взаимодействии с веществом создавать заряженные атомы и молекулы-ионы.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или при ядерных реакциях.

Чем больше энергия частиц, тем больше полная ионизация, вызванная ею в веществе. Пробег альфа-частиц, испускаемых радиоактивным веществом, достигает 8-9 см в воздухе, а в живой ткани — нескольких десятков микрон. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обусловливает их низкую проникающую способность и высокую удельную ионизацию, составляющую в воздухе на 1 см пути несколько десятков тысяч пар ионов.

Бета-излучение — поток электронов или позитронов, возникающих при радиоактивном распаде.

Максимальный пробег в воздухе бета-частиц — 1800 см, а в живых тканях — 2,5 см. Ионизирующая способность бета-частиц ниже (нескольких десятков пар на 1 см пробега), а проникающая способность выше, чем альфа-частиц.

Нейтроны, поток которых образует нейтронное излучение, преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма- квантов (гамма-излучение): при упругих взаимодействиях возможна обычная ионизация вещества.

Проникающая способность нейтронов в значительной степени зависит от их энергии и состава вещества атомов, с которыми они взаимодействуют.

Гамма-излучение — электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц.

Гамма-излучение обладает большой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение возникает в среде, окружающей источник бета-излучения (в рентгеновских трубках, ускорителях электронов) и представляет собой совокупность тормозного и характеристического излучения. Тормозное излучение — фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц; характеристическое излучение — это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атомов.

Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Источники ионизирующего излучения

Вид радиационного поражения человека зависит от характера источников ионизирующих излучений.

Естественный фон излучения состоит из космического излучения и излучения естественно-распределенных радиоактивных веществ.

Кроме естественного облучения человек подвержен облучению и из других источников, например: при производстве рентгеновских снимков черепа — 0,8-6 Р; позвоночника — 1,6-14,7 Р; легких (флюорография) — 0,2-0,5 Р: грудной клетки при рентгеноскопии — 4,7- 19,5 Р; желудочно-кишечного тракта при рентгеноскопии — 12-82 Р: зубов — 3-5 Р.

Однократное облучение в дозе 25-50 бэр приводит к незначительным скоропроходяшим изменениям в крови, при дозах облучения 80-120 бэр появляются признаки лучевой болезни, но без летального исхода. Острая лучевая болезнь развивается при однократном облучении 200-300 бэр, при этом летальный исход возможен в 50% случаев. Летальный исход в 100% случаев наступает при дозах 550- 700 бэр. В настоящее время существует ряд противолучевых препаратов. ослабляющих действие излучения.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы лучевой болезни являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика глаза, снижение иммунитета.

Степень воздействия радиации зависит от того, является облучение внешним или внутренним. Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, накапливающиеся в организме изотопы йода могут вызывать поражения щитовидной железы, редкоземельные элементы — опухоли печени, изотопы цезия, рубидия — опухоли мягких тканей.

Искусственные источники радиации

Кроме облучения от естественных источников радиации, которые были и есть всегда и везде, в XX веке появились и дополнительные источники излучения, связанные с деятельностью человека.

Прежде всего — это использование рентгеновского излучения и гамма-излучения в медицине при диагностике и лечении больных. Дозы, получаемые при соответствующих процедурах, могут быть очень большими, особенно при лечении злокачественных опухолей лучевой терапией, когда непосредственно в зоне опухоли они могут достигать 1000 бэр и более. При рентгенологических обследованиях доза зависит от времени обследования и органа, который диагностируется, и может изменяться в широких пределах — от нескольких бэр при снимке зуба до десятков бэр — при обследовании желудочно-кишечного тракта и легких. Флюрографические снимки дают минимальную дозу, и отказываться от профилактических ежегодных флюорографических обследований ни в коем случае не следует. Средняя доза, получаемая людьми от медицинских исследований, составляет 0,15 бэр в год.

Во второй половине XX века люди стали активно использовать радиацию в мирных целях. Различные радиоизотопы используют в научных исследованиях, при диагностике технических объектов, в контрольно-измерительной аппаратуре и т. д. И наконец — ядерная энергетика. Ядерные энергетические установки используют на атомных электрических станциях (АЭС), ледоколах, кораблях, подводных лодках. В настоящее время только на атомных электрических станциях работают свыше 400 ядерных реакторов общей электрической мощностью свыше 300 млн кВт. Для получения и переработки ядерного горючего создан целый комплекс предприятий, объединенных в ядерно-топливный цикл (ЯТЦ).

ЯТЦ включает предприятия по добыче урана (урановые рудники), его обогащению (обогатительные фабрики), изготовлению топливных элементов, сами АЭС, предприятия вторичной переработки отработанного ядерного горючего (радиохимические заводы), по временному хранению и переработке образующихся радиоактивных отходов ЯТЦ и, наконец, пункты вечного захоронения радиоактивных отходов (могильники). На всех этапах ЯТЦ радиоактивные вещества в большей или меньшей степени воздействуют на обслуживающий персонал, на всех этапах могут происходить выбросы (нормальные или аварийные) радионуклидов в окружающую среду и создавать дополнительную дозу на население, особенно проживающее в районе предприятий ЯТЦ.

Откуда появляются радионуклиды при нормальной работе АЭС? Радиация внутри ядерного реактора огромна. Осколки деления топлива, различные элементарные частицы могут проникать через защитные оболочки, микротрещины и попадать в теплоноситель и воздух. Целый ряд технологических операций при производстве электрической энергии на АЭС могут приводить к загрязнению воды и воздуха. Поэтому атомные станции снабжены системой водо- и газоочистки. Выбросы в атмосферу осуществляются через высокую трубу.

При нормальной работе АЭС выбросы в окружающую среду малы и оказывают небольшое воздействие на проживающее по близости население.

Наибольшую опасность с точки зрения радиационной безопасности представляют заводы по переработки отработанного ядерного горючего, которое обладает очень высокой активностью. На этих предприятиях образуется большое количество жидких отходов с высокой радиоактивностью, существует опасность развития самопроизвольной цепной реакции (ядерная опасность).

Очень сложна проблема борьбы с радиоактивными отходами, которые являются весьма значимыми источниками радиоактивного загрязнения биосферы.

Однако сложные и дорогостоящие системы защиты от радиации на предприятиях ЯТЦ дают возможность обеспечить защиту человека и окружающей среды до очень малых величин, существенно меньших существующего техногенного фона. Другая ситуация имеет место при отклонении от нормального режима работы, а особенно при авариях. Так, произошедшая в 1986 г. авария (которую можно отнести к катастрофам глобального масштаба — самая крупная авария на предприятиях ЯТЦ за всю историю развития ядерной энергетики) на Чернобыльской АЭС привела к выбросу в окружающую среду лишь 5 % всего топлива. В результате в окружающую среду было выброшено радионуклидов с общей активностью 50 млн Ки. Этот выброс привел к облучению большого количества людей, большому количеству смертей, загрязнению очень больших территорий, необходимости массового переселения людей.

Авария на Чернобыльской АЭС ясно показала, что ядерный способ получения энергии возможен лишь в случае принципиального исключения аварий крупного масштаба на предприятиях ЯТЦ.

Основные факты

  • Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн или частиц.
  • Люди подвергаются воздействию природных источников ионизирующего излучения, таких как почва, вода, растения, и воздействию искусственных источников, таких как рентгеновское излучение и медицинские устройства.
  • Ионизирующее излучение имеет многочисленные полезные виды применения, в том числе в медицине, промышленности, сельском хозяйстве и в научных исследованиях.
  • По мере расширения использования ионизирующего излучения увеличивается и потенциал опасностей для здоровья, если оно используется или ограничивается ненадлежащим образом.
  • Острое воздействие на здоровье, такое как ожог кожи или острый лучевой синдром, может возникнуть, когда доза облучения превышает определенные уровни.
  • Низкие дозы ионизирующего излучения могут увеличить риск более долгосрочных последствий, таких как рак.

Что такое ионизирующее излучение?

Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа). Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения. Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.

Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.

Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду. Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов. Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).

Источники излучения

Люди каждый день подвергаются воздействию естественного и искусственного излучения. Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе. Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.

Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте. В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения. Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.

На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.

Воздействие ионизирующего излучения

Воздействие излучения может быть внутренним или внешним и может происходить различными путями.

Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.

Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.

Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием). Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.

Люди могут подвергаться воздействию ионизирующего излучения в различных обстоятельствах: дома или в общественных местах (облучение в общественных местах), на своих рабочих местах (облучение на рабочем месте) или в медицинских учреждениях (пациенты, лица, осуществляющие уход, и добровольцы).

Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.

Первый случай — это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.

Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.

Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.

На медицинское использование излучения приходится 98% всей дозы облучения из всех искусственных источников; оно составляет 20% от общего воздействия на население. Ежегодно в мире проводится 3 600 миллионов радиологических обследований в целях диагностики, 37 миллионов процедур с использованием ядерных материалов и 7,5 миллиона процедур радиотерапии в лечебных целях.

Последствия ионизирующего излучения для здоровья

Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).

Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей.

Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год.

Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).

Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения. Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.

Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв. В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).

Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности. Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует. Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.

Деятельность ВОЗ

ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.

В соответствии с основной функцией, касающейся "установления норм и стандартов, содействия в их соблюдении и соответствующего контроля" ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.

Естественные источники

Основную часть облучения ионизирующим излучением население земного шара получает, как правило, от естественных источников ионизирующего излучения (естественные ИИИ). На протяжении всего времени существования Земли разные виды излучения попадают на Землю из Космоса (космические лучи, КЛ), а также поступают от естественных радионуклидов (ЕРН), которые находятся в атмосфере, гидросфере, в земной коре и совершают свой кругооборот в процессе естественной эволюции биосферы, а также в результате преобразующей ее деятельности человека. В их числе 3 H, 14 C, 32 P, 40 K, 222 Rn, 226 Ra, 232 Th, 235 U, 238 U. Некоторые из ЕРН образуются под действием космических лучей, и поэтому называются космогенными (например, тритий, 3 H, радиоуглерод, 14 С, радиофосфор, 32 P). Их концентрация в приповерхностном слое планеты поддерживается постоянным потоком КЛ. Ионизирующее излучение, создаваемое КЛ и естественными ИИИ, образует т.н. естественный радиационный фон (ЕРФ).

Уровень ЕРФ различен в разных районах Земли и колеблется в широких пределах от 2 — 4 мЗв в год (равнинные территории вдали от месторождений редкоземельных руд), до 440 мЗв в год (черные пески на некоторых пляжах в Бразилии, Индии и Китая, содержащие много тория-232 и радия-226, радоновые источники и т.п.). Организм аборигенов, живущих в этих местах, давно приспособился к повышенным уровням ЕРФ. Жителям других мест Земли в такие районы приезжать на длительное время не стоит.

Облучение может быть внутренним и внешним. Если источники ионизирующего излучения находятся вне организма и облучают его извне, то в этом случае, говорят о внешнем облучении. Если же ИИИ попали в организм человека (через воздух, воду, еду), то говорят о внутреннем облучении.

Перед тем как попасть в организм человека, радиоактивные вещества проходят сложный путь в окружающей среде, и это необходимо учитывать при оценке доз облучения, полученных от того или иного источника.

Внутреннее облучение в среднем составляет 2/3 эффективной дозы облучения, которую человек получает от естественного ионизирующего излучения. Оно поступает от радиоактивных веществ, которые попали в организм с едой, водой или воздухом. Небольшая часть этой дозы приходится на радиоактивные изотопы, которые образуются под воздействием космических лучей (в основном, углерод-14, тритий). Остальная часть облучения поступает от источников земного происхождения. В среднем человек получает около 180 мкЗв/год за счет калия-40, который усваивается организмом вместе с нерадиоактивным изотопом калия, играющим важную роль для жизнедеятельности человека. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшем количестве от радионуклидов ряда тория-232. Среди них одними из наиболее важных являются изотопы радона, образующиеся в результате распада изотопов радия, которые являются одними из долгоживущих членов радиоактивных рядов урана и тория. Радон – это газ без запаха и цвета, который может накапливаться в помещениях и, тем самым, быть очень опасным для людей. Его вклад в среднем является преобладающим среди всех источников излучения природного происхождения.

Люди также могут столкнуться с воздействием излучения от радионуклидов, находящихся в земной коре, при добыче нефти и газа, где они выступают в качестве естественно появляющегося радиоактивного материала (сокращенно — NORM от Naturally Occurring Radioactive Material, англ.). При добыче полезных ископаемых радон или радий могут скапливаться в трубопроводах, либо загрязнять поверхности, что представляет серьезную опасность для людей. Количественный вклад в дозу облучения от радионуклидов, имеющихся в земной коре, сильно варьируется в мире зависимости от местности из-за различий в содержании урана и тория в почвах. Уровень естественного радиационного фона в мире колеблется от 2 до 4 мЗв в год.

Искусственные источники

Искусственными (техногенными) источниками ионизирующих излучений (ИИИ) являются любые ИИИ, созданные человеком. Они могут быть изготовлены с целью использования ионизирующего излучения (ИИ) от этих источников, либо происходящих в них процессов для других целей (например, производство электрической и/или тепловой энергии).

Искусственные ИИИ разделяют на радионуклидные ИИИ и генераторы ИИ.

За несколько последних десятилетий человечество создало сотни искусственных радионуклидов и научилось использовать энергию атома как в военных целях, так и в мирных — для производства энергии, в медицине и др. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом. Индивидуальные дозы, которые получают разные люди от искусственных источников ионизирующих излучений, сильно отличаются. В большинстве случаев эти дозы незначительны, но иногда облучение за счет техногенных источников во многие тысячи раз интенсивнее, чем за счет естественных. Однако следует отметить, что дозы, формируемые техногенными источниками излучения, обычно легче контролировать, чем дозы облучения, связанные с радиоактивными осадками от ядерных взрывов и аварий на АЭС, равно как и дозы облучения, предопределенные космическими и земными естественными источниками.

Читайте также:  Жировик на нижнем веке фото

Области, в которых приходится сталкиваться с искусственными ИИИ, многообразны и обширны. К ним относятся:

  • производство электрической и тепловой энергии на атомных станциях и транспортных ядерных силовых установках, а также с помощью радионуклидных источников (космические аппараты, автономные радионуклидные источники электропитания и тепла);
  • ядерный топливный цикл;
  • стерилизация изделий и пастеризация пищевых продуктов с помощью промышленных облучателей (промышленные ускорители и гамма-облучатели);
  • неразрушающий контроль и контроль качества изделий в промышленности, строительстве, на транспорте и др.;
  • контроль технологических процессов, уровня заполнения сосудов, определение параметров продукции и образцов окружающей среды, таких, как толщина, содержание влаги (радиационные датчики, в частности, радиационные измерительные приборы);
  • разведка полезных ископаемых и контроль глубины бурения (ядерный каротаж);
  • производство средств измерений характеристик ИИ;
  • исследование атомно-молекулярной структуры веществ (рентгено-флуоресцентный анализ, рентгеноструктурный анализ, электронная микроскопия, активационный анализ, нейтронография и т.п.);
  • контроль процессов в различных средах с помощью радиоактивных меток (радиотрассеры);
  • многочисленные медицинские применения с использованием рентгеновских аппаратов, ускорителей, радионуклидных источников, в перспективе — медицинских ядерных реакторов нулевой мощности (медицинская радиология);
  • производство радионуклидов для различных нужд, в т.ч.радиофармпрепаратов для ядерной медицины;
  • обращение с материалами, содержащими естественные радионуклиды в концентрациях, превышающих соответствующиезначения для природных образцов (Naturally Occurring Radioactive Materials, NORM);
  • перевозка радиоактивных и ядерных материалов;
  • ведение деятельности на территориях, загрязненных радионуклидами;
  • ликвидация последствий ядерных и радиационных аварий;
  • обращение с радиоактивными отходами;
  • обеспечение безопасности (досмотровые системы), используемые при контроле багажа, грузов, досмотре в местах массового скопления людей и в важных для безопасности организациях, ядерная криминалистика;
  • научные исследования;
  • система образования.

По отношению к искусственным источникам ионизирующего излучения выделяют две группы облучаемых:

  • Население
  • Профессионально облучаемые лица (персонал).

Медицинские процедуры, такие, как рентгеновская дигностика, ядерная медицина и лучевая терапия дают наиболее значительный вклад в облучение населения со стороны искусственных источников излучения. В меньшей мере население облучается от потребительских товаров, строительных материалов, сжигаемых топлив, рентгеновских досмотровых установок и т.д.

Читайте также:  Кабинет анонимного обследования на венерологические заболевания

Профессионалы подвергаются облучению во время выполнения своих профессиональных обязанностей от источников, с которыми они работают. Они работают в таких областях, как, например, ядерная медицина, ядерная энергетика, добыча нефти/газа и их переработка, обеспечение физической защиты и др. Данные специалисты подпадают под программу индивидуального дозиметрического контроля и мониторинга облучения ионизирующим излучением и должны быть снабжены индивидуальными дозиметрами для ежедневного ношения в соответствии с требованиями радиационной безопасности.

Ссылка на основную публикацию
Золотой йод отзывы
ГОМЕОПАТИЧЕСКАЯ ФАРМАЦИЯ, ООО (Россия) Гомеопатический препарат, улучшающий кровообращение головного мозга МКБ: F07 Расстройства личности и поведения, обусловленные болезнью, повреждением или...
Если ребенок выпил нафтизин
Если ребёнок выпил Нафтизин, необходимо вызвать врача и принять меры для промывания желудка. Такая ситуация может быть очень опасной из-за...
Если ребенок проглотил батарейку кругленькую симптомы
Миниатюрные источники энергии – пальчиковые, батарейки-таблетки все чаще применяются не только в современной бытовой технике (пультах, часах), но и в...
Золотой стафилококк симптомы у грудных детей
Что представляет собой золотистый стафилококк у грудничка, как он проявляется и какое лечение требуется? Стафилококки представляют собой широкую группу анаэробных...
Adblock detector